Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(15): e202401097, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38308505

RESUMEN

It is highly challenging to reproducibly prepare semiconducting polymers with targeted molecular weight tailored for next-generation photovoltaic applications. Once such an easily accessible methodology is established, which can not only contribute to overcome the current limitation of the statistically determined nature of semiconducting polymers, but also facilitate rapid incorporation into the broad synthetic chemists' toolbox. Here, we describe a simple yet robust ultrasonication-assisted Stille polymerization for accessing semiconducting polymers with high-precision tailored molecular weights (from low to ultrahigh molecular weight ranges) while mitigating their interbatch variations. We propose that ultrasound-induced simultaneous physical and chemical events enable precise control of the semiconducting polymers' molecular weights with high reproducibility to satisfy all the optical/electrical and morphological demands of diverse types of high-performance semiconducting polymer-based devices; as demonstrated in in-depth experimental screenings in applications of both organic and perovskite photovoltaics. We believe that this methodology provides a fast development of new and existing semiconducting polymers with the highest-level performances possible on various photovoltaic devices.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35849798

RESUMEN

Modifying the end-capping groups in nonfullerene acceptors (NFAs) is an effective strategy for modulating their properties and that of the entire NFAs. This study reports the synthesis of a novel γ-ester-functionalized IC end-capping group (IC-γe) and its incorporation into the benzothiadiazole-fused central core, yielding isomer-free IC-γe end-capped NFAs, such as Y-IC-γe, Y-FIC-γe, and Y-ClIC-γe. The resultant NFAs exhibited similar absorption profiles but upshifted the lowest unoccupied molecular orbital energy level compared with those of the ester-free analogues, such as Y6 and Y7. Without thermal annealing, an excellent power conversion efficiency (PCE) of 16.4% is realized in the annealing-free OSC based on Y-FIC-γe with the PM6 donor polymer, which outperforms the OSCs based on Y-IC-γe and Y-ClIC-γe. In addition, the OSCs based on asymmetric Y-FIC-γe and Y-ClIC-γe have higher thermal stability with more than 83% PCE retention at an elevated temperature after 456 h than the symmetric Y-IC-γe case. In this study, we not only establish the structure-property relationship regarding the ester functionality and symmetricity tuning on the NFAs but also diagnose the reasons for the best-performing Y-FIC-γe-based OSCs, providing useful information for a novel high-performing NFA design strategy.

3.
Phys Chem Chem Phys ; 24(4): 1982-1992, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34897314

RESUMEN

By taking advantage of bulk-heterojunction structures formed by blending conjugated donor polymers and non-fullerene acceptors, organic photovoltaic devices have recently attained promising power conversion efficiencies of above 18%. For optimizing organic photovoltaic devices, it is essential to understand the elementary processes that constitute light harvesters. Utilising femtosecond-resolved spectroscopic techniques that can access the timescales of locally excited (LE) state and charge-transfer (CT)/-separated (CS) states, herein we explored their photophysics in single chains of the top-notch performance donor-acceptor polymer, PM6, which has been widely used as a donor in state-of-the-art non-fullerene organic photovoltaic devices, in a single LE state per chain regime. Our observations revealed the ultrafast formation of a CT state and its equilibrium with the parent LE state. From the chain-length dependence of their lifetimes, the equilibrated states were found to idle until they reach a chain folding. At the chain folding, the CT state transforms into an interchain CT state that bifurcates into forming a CS state or annihilation within a picosecond. The observation of prevalent nonexponential behaviour in the relaxation of the transient species is attributed to the wide chain-length distribution that determines the emergence of the chain foldings in a single chain, thus, the lifetime of a LE and equilibrated CT states. Our findings indicate that the abundance of chain folding, where the generation of the "reactive" CS state is initiated from the interchain CT state, is essential for maximising charge carriers in organic photovoltaic devices based on PM6.

4.
Science ; 369(6511): 1615-1620, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32973026

RESUMEN

Further improvement and stabilization of perovskite solar cell (PSC) performance are essential to achieve the commercial viability of next-generation photovoltaics. Considering the benefits of fluorination to conjugated materials for energy levels, hydrophobicity, and noncovalent interactions, two fluorinated isomeric analogs of the well-known hole-transporting material (HTM) Spiro-OMeTAD are developed and used as HTMs in PSCs. The structure-property relationship induced by constitutional isomerism is investigated through experimental, atomistic, and theoretical analyses, and the fabricated PSCs feature high efficiency up to 24.82% (certified at 24.64% with 0.3-volt voltage loss), along with long-term stability in wet conditions without encapsulation (87% efficiency retention after 500 hours). We also achieve an efficiency of 22.31% in the large-area cell.

5.
Small ; 16(5): e1905309, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31922652

RESUMEN

A family of the SM-axis series based on benzo[1,​2-​b:4,​5-​b']​dithiophene and 3-ethylrhodanine (RD) units with structurally different π-conjugation systems are synthesized as a means to understand the structure-property relationship of conjugated pathways in ternary non-fullerene organic solar cells (NF-OSCs) as a third component. The optical and electrochemical properties of the SM-axis are highly sensitive both to the functionalized direction and to the number of RD groups. Enhanced power conversion efficiencies (PCEs) of over 11% in ternary devices are obtained by incorporating optimal SM-X and SM-Y contents from PBDB-T:ITIC binary NF-OSCs, while a slightly lower PCE is observed with the addition of SM-XY. The results of in-depth studies using various characterization techniques demonstrate that working mechanisms of SM-axis-based ternary NF-OSCs are distinctly different from one another: an energy-transfer mechanism with an alloy-like model for SM-X, a charge transfer with the same model for SM-Y, and an energy transfer without such a structure for SM-XY. As extension of the scope, a SM-X-based ternary NF-OSC in the PM6:IT4F system also shows a greatly enhanced PCE of over 13%. The findings provide insights into the effects of conjugated pathways of organic semiconductors on mechanisms of ternary NF-OSCs, advancing the understanding for synthetic chemists, materials engineers, and device physicists.

6.
Angew Chem Int Ed Engl ; 57(40): 13277-13282, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30113743

RESUMEN

Considering the potential applications of all-polymer solar cells (all-PSCs) as wearable power generators, there is an urgent need to develop photoactive layers that possess intrinsic mechanical endurance, while maintaining a high power-conversion efficiency (PCE).Herein a strategy is demonstrated to simultaneously control the intercalation behavior and nanocrystallite size in the polymer-polymer blend by using a newly developed, high-viscosity polymeric additive, poly(dimethylsiloxane-co-methyl phenethylsiloxane) (PDPS), into the TQ-F:N2200 all-PSC matrix. A mechanically robust 10wt% PDPS blend film with a great toughness was obtained. Our results provide a feasible route for producing high-performance ductile all-PSCs, which can potentially be used to realize stretchable all-PSCs as a linchpin of next-generation electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...